Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 10,
  • pp. 3760-3769
  • (2024)

Automatic Turbulence Resilience in Pilot-Assisted Self-Coherent Free-Space Optical Communications

Not Accessible

Your library or personal account may give you access

Abstract

Free-space optical (FSO) communications has potential advantages of higher data capacity and lower probability of interception, when compared to radio-frequency communications. However, atmospheric turbulence generally limits performance of FSO links because it induces modal coupling from the fundamental Gaussian mode to many higher-order Laguerre-Gaussian (LG) spatial modes. We review pilot-assisted self-coherent (PASC) approach that can enable turbulence-resilient FSO communications. In PASC, a frequency-offset continuous-wave pilot beam is co-transmitted with the data beam and eventually the two beams are optoelectronically mixed at receiver's photodetector (PD). During square-law mixing in PD, a turbulence conjugate distortion is automatically generated and applied to the distorted data beam. Thus, all the spatial modes can be efficiently mixed between pilot and data beams. As a result, the recovered data quality is not severely affected by turbulence-induced modal coupling effects. We also review the extended applications of PASC approaches, including: (a) increasing spectral efficiency by Kramers-Kronig detection; (b) enhancing system bandwidth by PASC with a PD array; (c) improving PD bandwidth utilization by PASC with self-homodyne detection. Finally, we discuss the enhanced misalignment tolerance by PASC in FSO links.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.